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may hence be studied using the dual quantum mechanics. This quantum mechanics is

strongly coupled which motivates the use of lattice techniques. We argue that, contrary

to expectation, the theory when discretized naively will nevertheless recover continuum

supersymmetry as the lattice spacing is sent to zero. We test these ideas by studying the

4 supercharge version of this Yang-Mills quantum mechanics in the ’t Hooft limit. We

use both a naive lattice action and a manifestly supersymmetric action. Using Monte

Carlo methods we simulate the Euclidean theories, and study the lattice continuum limit,

for both thermal and non-thermal periodic boundary conditions, confirming continuum

supersymmetry is recovered for the naive action when appropriate. We obtain results for

the thermal system with N up to 12. These favor the existence of a single deconfined

phase for all non-zero temperatures. These results are an encouraging indication that the

16 supercharge theory is within reach using similar methods and resources.
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1. Introduction

Despite progress in understanding quantum gravity there has been relatively little progress

in theoretically realizing a quantum black hole, the key object in quantum gravity. Sub-

stantial progress was afforded by the work of Strominger and Vafa [1] who showed that for

certain black holes in string theory the constituent microstates can be explicitly counted
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and the result is in agreement with the usual Bekenstein-Hawking entropy [2]. The calcu-

lation relies on a continuation to a weakly coupled theory where states can be explicitly

counted, and this number is then argued to be independent of the continuation. This gives

an indirect understanding of the microstates of the black hole. Another beautiful result of

Strominger is that the entropy of black holes with an AdS3 near horizon geometry can be

computed on very general grounds as the gravitational theory describing the black hole can

be argued to be given by a 2-d conformal field theory [3]. One does not know the theory,

but does know its central charge, which is sufficient to compute the entropy using Cardy’s

result. Thus again we gain insight into the microstates, although we are not able to solve

the theory governing the quantum black hole. For a review of these approaches we refer the

reader to [4] and for an interesting new proposal concerning understanding the microscopic

description without resorting to a weak coupling continuation see the work of Mathur [5].

A very promising new direction for the study of quantum gravity is the AdS/CFT

correspondence and its generalizations [6, 7]. Here one can describe certain black holes

in terms of the worldvolume theory of the D-branes that compose them. These are 16

supercharge gauge theories in various dimensions, taken in the large N ’t Hooft limit and

at finite temperature. The regime in which they describe string theory black holes is one in

which they are strongly coupled, and solving this theory would allow one to directly study

the quantum properties of the dual black hole, including its thermodynamic properties.

The problem of computing directly in this strongly coupled theory is a technical one, not

one of principle. While analytic methods have made much progress in describing the planar

limit of the 4 dimensional version of this correspondence using integrability techniques [8]

it is not generally understood how to go beyond this limit. It particular black holes are

precisely objects that live beyond this limit, having dual energy densities of order O(N2).

Even protected quantities that can give information about the strongly coupled theories

through weak coupling calculations have not yet revealed information about black holes [9]

and if they do in the future, they will remain indirect probes of quantum black hole physics.

Another direction for direct calculation is the use of the Gaussian approximation, pioneered

in this context for Yang-Mills quantum mechanics in [10]. Certain agreement with black

hole thermodynamics was extracted [11], although the approximation scheme is essentially

uncontrolled, having no small parameter.

The aim of this paper is to investigate the feasibility of using lattice methods to

directly simulate the strongly coupled worldvolume theories. Lightcone methods [12 – 14]

have yielded fascinating results, giving evidence that the graviton propagator is correctly

reproduced in the 2 dimensional version of the correspondence. Here, we test the use of

direct Monte Carlo simulation of the lattice regulated path integral to investigate these

systems. Since we are interested in studying the theory at finite temperature, Monte Carlo

techniques seem the most natural as they allow us to study observables directly in the

thermal ensemble. In addition, Monte Carlo methods are often the only feasible approach

in higher dimensions.

These theories are necessarily supersymmetric, and this presents technical challenges

for the lattice. The first problem encountered in such a study is how best to discretize

such a supersymmetric theory. There has been much interest in the lattice study of super-
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symmetric theories. Aside from our current application, supersymmetry plays a prominent

role in efforts to construct theories which go beyond the standard model of particle physics

and the lattice provides the possibility of studying nonperturbative effects such as dynam-

ical supersymmetry breaking, of relevance for phenomenology. Unfortunately, in many

cases, supersymmetry is broken at the classical level in such discretizations and can only

be regained in the quantum continuum limit after a great deal of fine tuning in the lat-

tice theory. Recently significant effort has gone into attempts to construct lattice theories

which retain an exact supersymmetry at non-zero lattice spacing. Two approaches have

been used; lattice models arising from orbifolding a supersymmetric matrix model [15 – 19]

and constructions based on discretizing a topological or twisted form of the continuum

supersymmetric theory [20 – 24]. In the case of Yang-Mills theories it appears that these

approaches are intimately connected [25, 26]. The approach based on twisting has also

been studied in the case of Wess-Zumino and sigma models [27 – 31]. The philosophy be-

hind these approaches is that this residual lattice supersymmetry will help to protect the

theory from the dangerous radiative corrections which lead to fine tuning.

However, in a sufficiently low number of dimensions the super renormalizable nature

of the models leads to much reduced fine tuning problems — typically there are only

a finite number of divergences in such theories which may be computed in perturbation

theory [32]. In the case considered here, supersymmetric Yang-Mills quantum mechanics,

we argue that no relevant supersymmetry breaking counterterms can be written down.

Naive discretizations of such a theory, while breaking supersymmetry classically by terms

of the order of the lattice spacing, flow automatically to the supersymmetric theory in the

naive continuum limit corresponding to a vanishing lattice spacing.

In this paper we have examined the effectiveness of using Monte Carlo simulation to

study super Yang-Mills quantum mechanics in the large N ’t Hooft limit in the case of the

4 supercharge model. This theory, while exhibiting many features which are qualitatively

similar to its 16 supercharge cousin, is computationally easier and a useful ‘warm-up’ exer-

cise before tackling the 16 supercharge case. It has been studied using Hamiltonian methods

in [33, 34] for SU(2). We have studied two different discretizations of this theory. One of

these possesses 2 exact lattice supersymmetries corresponding to the dimensional reduction

of the twisted model derived in [23]. The other corresponds to a naive discretization of the

continuum theory constrained only by the necessity of employing a lattice derivative which

forbids fermion doubling. Both are invariant under lattice gauge transformations.

We give analytical arguments that the naive action should not require fine tuning to

attain the correct continuum limit. We reinforce this conclusion by conducting numerical

simulations of the model on finite lattices at zero temperature. The results of these simu-

lations show that the vacuum energy approaches zero as the lattice spacing is reduced and

that expectation values computed in this naive lattice theory agree with those computed

with the supersymmetric lattice action. Since the simulations of the supersymmetric sys-

tem are much more computationally demanding we have primarily used the naive action

in subsequent simulations of the thermal system.

To set the stage for the interpretation of our thermal results we have also simulated

the quenched theory. These confirm the previous expectation of a rapid crossover in the
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thermodynamic behavior of the system at some temperature which becomes a sharp phase

transition as N → ∞ [35, 36]. For high temperatures the theory appears deconfined but

below the critical temperature the system enters a confining phase with non-zero vacuum

energy. Our new results from simulations of the full 4 supercharge theory however favor

a simple phase structure with a single deconfined phase for all non-zero temperatures

- as we would expect for the behaviour of the 16 supercharge theory from holographic

considerations. We are able to simulate this 4 supercharge thermal theory with N up to

12, already sufficient to see the asymptotic ’t Hooft scaling.

The plan of the paper is as follows. In section 2 we introduce the Yang-Mills model

in the continuum including a discussion of its renormalizability and vacuum structure.

Section 3 describes the two lattice actions we have utilized while we present our results

for the quenched, zero temperature and thermal theories in section 4. Our final section

discusses the implication of our results both in the context of the 4 supercharge model and

its string theory cousin with 16 supercharges.

Finally, the paper ends with several appendices containing more technical details on

holographic duality, the quantum corrections to the classical moduli space of the theory,

and further numerical results concerning the extrapolation of our finite lattice data to the

continuum limit. It also contains a detailed description of the RHMC algorithm used in

our simulations.

While this paper was in preparation we received a paper which utilizes momentum

space methods to study the same system for SU(4) with results that are in at least quali-

tative agreement with ours [37].

2. 4 supercharge Yang-Mills quantum mechanics

The Euclidean supersymmetric SU(N) Yang-Mills quantum mechanics we are interested in

can be thought of as arising from the classical dimensional reduction of N = 1 super Yang-

Mills in 4 dimensions. The matter content in the quantum mechanics arises from reduction

of the gauge field in 4-d, giving 3 adjoint bosonic scalar fields Xi, where i = 1, . . . , 3 and

the adjoint gauge field, A. The 4-d adjoint fermions can be equivalently written in either

a Weyl or Majorana representation. Here we will use the Weyl representation, giving a

complex 2-component fermion field, Ψα with a Euclidean spinor index α, transforming in

the adjoint of the gauge group. Dimensionally reducing this, the spinor index becomes an

internal symmetry. The quantum mechanics Euclidean action is given as,

S =
1

λ
NTr

∮ R

dτ

{

1

2
(DτXi)

2 − 1

4
[Xi,Xj ]

2 + iΨ̄σ̄τDτΨ − Ψ̄σ̄i [Xi,Ψ]

}

, (2.1)

with τ being compact Euclidean time with radius R and our assignment of canonical di-

mensions for the fields reflects their four dimensional origins. The covariant derivative is

defined as Dτ = ∂τ + i [A(τ), ·] on an adjoint field, and we use the usual (Euclidean) chiral

conventions,

σ̄τα̇α = −i1, σ̄iα̇α = −σi (2.2)
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with σi being the Pauli matrices. We have written the SU(N) gauge theory using the

’t Hooft coupling λ = Ng2
YM, with gYM the Yang-Mills gauge coupling. The supersym-

metry transformation derives from that of the reduction of the parent 4-d N = 1 super

Yang-Mills, giving,

δA = −iΨ̄σ̄τ ξ

δXi = −iΨ̄σ̄iξ

δΨ = 2
(

στiξ
)

(DτXi) + i
(

σijξ
)

[Xi,Xj ] (2.3)

where we use the notation σµν = 1
4 (σµσ̄ν − σν σ̄µ). The theory has a global SO(3) symme-

try which can be interpreted as a rotational invariance in the target space of the theory,

with action,

X ′
i = Λj

(1)iXj Ψ′
α = Λβ

( 1

2
)α

Ψβ (2.4)

where Λ(1) gives the representation of SO(3) acting on vectors, and Λ(1/2) the representation

on spinors.

Since the Euclidean time is topologically S1 we have two spin structures which give

either periodic or anti-periodic boundary conditions for the fermion Ψ as we traverse the

time circle. In the latter case, the path integral Z is the usual thermal partition function

with temperature T ,

Za(R) = Tre−RĤ (2.5)

where R is the inverse temperature 1/T , and Ĥ is the Hamiltonian operator. Taking

periodic boundary conditions,

Zp(R) = Tr(−1)F̂ e−RĤ (2.6)

where F̂ is the fermion operator, and hence Zp gives the Witten index, whose value counts

the difference in the number of fermionic and bosonic ground states Ĥ|ψ >= 0, and hence

should not depend continuously on R.

2.1 The 16 supercharge theory and its IIA closed string theory dual

The 16 supercharge theory, which arises as the 1 dimensional reduction of N = 1 super

Yang-Mills in 10 dimensions, takes a very similar form to the above. The only difference

is that the reduction of the 10-d gauge field gives rise to 9 adjoint scalars Xī, with ī =

1, . . . , 9, and the 10-d Majorana fermions yield an adjoint fermion Ψµ̄ now with spinor index

µ̄ = 1, . . . , 16. Note that unlike the 4 supercharge theory, there is no Weyl representation

available for the fermions, and hence one obtains a Pfaffian from integrating out these fields

rather than a determinant.

Since the 16 supercharge theory is so similar to the 4 supercharge theory, one might ask

why we have decided to simulate the 4 supercharge case here. Clearly the 16 supercharge

case will generate a fermion operator which is four times larger than its 4 supercharge

cousin. With current simulation algorithms for near massless dynamical fermions this will

lead to a factor of 16 slowdown in our simulations. In addition even in the continuum

Euclidean theory the Pfaffian that results after integration over the fermions is in general
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complex as seen from considering the zero momentum sector of the theory [38]. In contrast

to this the continuum 4 supercharge theory has a Pfaffian which can be recast as a positive

definite real determinant, and we later show that our naive lattice discretization also has

this property. The feasibility of using Monte Carlo methods to simulate such a system with

complex Pfaffian depends upon whether the resulting phase fluctuations are relatively small

and infrequent as we approach the continuum limit. In the latter case standard reweighting

techniques can be used to evaluate expectation values generated in the phase quenched

ensemble (see eg. [39]. Because of these technical subtleties we have decided to initially

study the 4 supercharge theory before moving to the 16 supercharge case.

Following the AdS-CFT conjecture Itzhaki et al [7] have argued that SU(N) 16 super-

charge Yang-Mills theories taken in the large N ’t Hooft limit are dual to certain closed

superstring theories in the near horizon region of N coincident D-branes. In particular

SU(N) super Yang-Mills quantum mechanics is supposedly dual to the IIA string theory

describing N D0-branes. We review this correspondence in more detail in the appendix A.

Here we simply state the results that the analysis gives.

At a finite temperature T = 1/R the quantum mechanics theory then describes a gas

of N D0-branes in the dual IIA theory. In one dimension we can define a parameter,

β =
λ

1

3

T
(2.7)

which we can think of as a dimensionless inverse temperature, characterizing the behavior

of the theory. For large β ≫ 1 (but still finite as compared with N) the system of D0-

branes should be well described by a supergravity black hole which is much larger in radius

than the string length α′1/2. It is remarkable that since we know how to compute the

Bekenstein-Hawking entropy of the supergravity black hole, we can predict - assuming the

holographic correspondence is correct - that in the large β limit the precise form of the

Yang-Mills entropy and free energy will be,

S = 11.5N2β−9/5, f = −4.11N2β−14/5 (2.8)

where f is the dimensionless free energy, given by F = λ1/3f where F is the usual free

energy [7]. For decreasing β the curvature at the horizon radius becomes larger and the su-

pergravity description receives string oscillator α′ corrections, about which little is known.

For small β ≪ 1 the system can best be thought of as a highly excited hot ball of

strings and branes. Polchinski and Horowitz have argued that the hot ball of strings

for β ≪ 1 and the black hole at β ≫ 1 are the same object, and the physics at the

transition β ∼ 1 - the ‘correspondence point’ - is therefore smooth [40]. Witten has

argued that the presence of a black hole in the dual string theory (geometrically implying

a contractible Euclidean time circle) indicates the Yang-Mills theory is in a deconfined

phase, with thermodynamic quantities scaling as O(N2) and finite expectation value for

the amplitude of the Polyakov loop < | 1
N Trei

H

Adτ | > [41]. Conversely the appearance of

a confined phase would correspond to the absence of a black hole in the dual geometry,

or more precisely a non-contractible time circle, and results in thermodynamic quantities

of order O(1) and a vanishing expectation value for the Polyakov loop. Hence at large
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β ≫ 1 we expect the 16 supercharge theory to be deconfined as it is indeed dual to a black

hole. At small β ≪ 1 one can dimensionally reduce the theory to a bosonic matrix model,

which Monte Carlo simulation shows has energies scaling as O(N2), and hence one expects

that the 16 supercharge theory is likely to be deconfined for all β [35, 36], tallying with

smoothness at the ‘correspondence point’.

Hence the key questions that would concern a study of the thermal 16 supercharge

Yang-Mills theory in the ’t Hooft limit would be to confirm the above thermodynamic

expectations at small and large β, and to study the transition region to see if there is a

phase transition in the correspondence region.

Whilst in this paper we shall not compute with this 16 supercharge theory, we will

simulate its relative, the 4 supercharge Yang-Mills model in the ’t Hooft limit. These two

theories have similar classical and quantum low energy dynamics and one might expect

their qualitative thermodynamic properties to be similar. However, strictly one should

view the calculation in this paper as a warm-up exercise for the 16 supercharge case, and a

demonstration that the quantities of interest in the latter theory are likely to be computable

using similar methods.

2.2 Infrared behaviour of the 4 supercharge Euclidean theory

The classical bosonic moduli space of the theory is simply given by setting the scalar and

gauge field adjoint matrices to be mutually commuting, and constant in Euclidean time.

This implies they are all diagonal up to gauge transformation. Such a classical moduli

space naively leads to the concern that the path integral is not well defined due to infra-red

divergences. However, in both the periodic and thermal cases quantum corrections lift this

classical bosonic moduli space and hence render the path integral convergent. There are

two sources of quantum corrections to be considered. These are the off-diagonal elements of

the constant modes about the time circle, and secondly, the non-constant modes about the

Euclidean time circle. For a given β, the loop expansion parameter is determined by the

separation of the diagonal elements of the constant modes. The infra-red behaviour of the

theory is precisely in the regime where we take the diagonal elements of the constant modes

to be well separated, and hence we can approximate the theory by a 1-loop calculation. In

appendix B we explicitly perform the computation of the effective action for the bosonic

classical zero modes in both periodic and thermal cases. We now summarize the results in

this appendix, beginning with the thermal theory.

2.2.1 The finite temperature theory

The thermal case is simpler than the periodic case, and the result we give was previously

given as a special case in Aharony et al [36]. Taking temperature T , and antiperiodic

Euclidean time with radius R = 1/T , the thermal boundary conditions imply there are no

fermion modes that are constant in time, and hence no fermion zero modes. Thinking of

– 7 –
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the adjoint fields as N × N matrices we may expand them as,

Aab(τ) = Aaδab +
1√
2π

∞
∑

m=−∞

δA
(m)
ab e

2π
R

imτ

Xi,ab(τ) = xa
i δab +

1√
2π

∞
∑

m=−∞

δX
(m)
i,ab e

2π
R

imτ

Ψα,ab(τ) =
1√
2π

∞
∑

m=−∞

δΨ
(m)
α,abe

2π
R

i(m+ 1

2
)τ (2.9)

where the matrix indices a, b = 1, . . . , N . The classical bosonic moduli are Aa, xa
i . We

take the perturbations δA(0), δX
(0)
i to have no diagonal terms and since the gauge group

is SU(N), the field matrices are traceless so the sums
∑

a Aa,
∑

a xa
i vanish. We define

∆Aab = R(Aa−Ab) and ∆xab
i = R(xa

i −xb
i), where we note that these are now dimensionless.

As we show in the appendix, we may integrate out all the fluctuations with any m provided

the diagonal component moduli are sufficiently well separated compared to dimensionless

temperature, so,

|∆xab| ≫ β3/4 , for all a 6= b. (2.10)

As noted in the appendix, this condition arises from the zero modes with m = 0. For small

circle size, β ≪ 1 we can integrate out all ‘Kaluza-Klein’ modes, ie. bosonic fluctuations

with m 6= 0 and all the fermionic fluctuations, and are then left with a zero dimensional

bosonic matrix theory. However, unless the moduli are well separated in the sense above,

one cannot also integrate out the off-diagonal components of this matrix theory, ie. the

m = 0 fluctuations.

As shown in the appendix, when we gauge fix the action and integrate out the fluc-

tuations at 1-loop we find an action for the bosonic moduli. Supersymmetry is broken

by the thermal boundary conditions and hence the 1-loop determinants from the bosonic

and fermionic fluctuations do not cancel each other. We obtain an effective action for the

moduli,

S1−loop[A
a, xa

i ] =
∑

a<b

log

(

cosh |∆xab| − cos ∆Aab

cosh |∆xab| + cos ∆Aab

)

. (2.11)

This potential takes a simple form, arising from a pair-wise interaction of the moduli and

hence scales as O(N2). Gauge invariance implies the potential is periodic in ∆Aab, the

moduli Aa multiplied by R being angular variables giving the value of the Wilson loop

Pei
H

dτA = eiβAaδab = diag
(

eiRA1

, eiRA1

, . . . , eiRAN
)

. The minimum for the potential is

when the moduli are coincident. Asymptotically, for a large separation |∆xab| ≫ 1 the

potential goes to zero as S1−loop ∼ −e−|∆xab| cos ∆Aab, and so is attractive towards the

coincident point for −π
2 < ∆Aab < π

2 . One might worry that all moduli will simply coa-

lesce under these attractive pairwise forces. However, as discussed above, for a separation

|∆xab| ∼ β3/4 the loop approximation breaks down and the theory becomes strongly cou-

pled. Hence we see that the classical moduli space is lifted by an attractive potential that

drives the infra-red dynamics to strong coupling.
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Since the path integral measure over the non-compact zero modes is
∏

a,i dxa
i we see

that the integral, giving the partition function, should be convergent in the infra-red due

to the exponential decay of the potential to zero for large separations. Naively this fast

fall off would imply that the tails of the eigenvalue distributions of the scalars should die

off faster than a power law.

2.2.2 The periodic theory

The analysis of the periodic case is more subtle. The results we summarize here and give

fully in the appendix are new, and draw on previous results of Aoki et al and Aharony et

al [42, 36]. The interesting feature of the periodic case is that in addition to the bosonic

classical zero modes, there are also fermionic zero modes, where the fermion field matrices

are diagonal and constant in time. We may then compute a 1-loop effective action for

both the boson and fermion zero modes by integrating out fluctuations about these. Then

integrating over the fermion zero modes yields an effective theory for the bosonic zero

modes, which has an attractive potential that drives the theory to strong coupling. We

begin, as above, by writing our field as matrices and expanding as,

Aab(τ) = Aaδab +
1√
2π

∞
∑

m=−∞

δA
(m)
ab e

2π
R

imτ

Xi,ab(τ) = xa
i δab +

1√
2π

∞
∑

m=−∞

δX
(m)
i,ab e

2π
R

imτ

Ψα,ab(τ) = ξa
αδab +

1√
2π

∞
∑

m=−∞

δΨ
(m)
α,abe

2π
R

imτ (2.12)

where we have included classical fermionic moduli, ξa
α. We take the fluctuations δΨ

(0)
α to

have no diagonal terms and since the gauge group is SU(N), the matrix Ψα is traceless so

the sum
∑

a ξa
α vanishes. The dimensionless coupling controlling the integration over the

fluctuations is the same as in the thermal case above.

As shown in the appendix, when we gauge fix the action and integrate out the fluctu-

ations at 1-loop we find an action for the bosonic and fermionic moduli. Supersymmetry

leads to large cancellations between contributions of the bosonic and fermionic fluctuations,

and we find that this action is only non-trivial due to the presence of the fermionic mod-

uli, ξa
α. When we integrate over these, we then obtain an effective action for the bosonic

moduli,

S1−loop[Aa, xa
i ] = − log

∑

(a1,a2,...,aN )∈P

Ma1a2Ma2a3 . . . MaN−2aN−1MaN−1aN (2.13)

where P is the set of permutations of (1, 2, . . . , N), and

Mab =
∞
∑

m=−∞

1
(

(m + ∆Aab)2 + (∆xab
i )2

)3 . (2.14)

This potential is again periodic in ∆Aab. It is energetically unfavourable for large sep-

arations in |∆xab
i |, and hence is attractive. As above the classical bosonic moduli space
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is lifted, and the attractive potential drives the theory to strong coupling, with a moduli

separation |∆xab| ∼ β3/4. Since the number of terms in the sum is N !, we expect the

1-loop effective action for the bosonic zero modes to have energy O(N log N). Since the

path integral measure over these remaining zero modes is
∏

a (dAa
∏

i dxa
i ) we see that the

integral, giving the partition function, should be convergent in the infra-red. Analogous

reasoning to that of Krauth and Staudacher [43] in the context of matrix integrals suggests,

using naive power counting, that the distribution of the bosonic eigenvalues should have

tails decaying as a power law 1/x3. In particular this means that the expectation values

of the moments TrX2p for any positive integer p do not exist, even though the partition

function itself does.

As mentioned above, for small enough circle size we may effectively ignore all the non-

constant modes on the circle and the quantum mechanics should reduce to the 4 supercharge

matrix integral. This has been studied beyond the 1-loop approximation both numerically

and analytically. In particular Austing [44] has proven analytically existence of a twisted

version of the theory and full Monte Carlo simulation was performed by Ambjorn et al [45]

for large N .

At this point we should comment that analogous calculations for the 16 supercharge

theory would yield similar results for the effective potential governing the fluctuations of

the bosonic zero modes in both the periodic and thermal cases.

2.3 Phase structure

In our supersymmetric quantum mechanics with finite N , and hence a finite number of

degrees of freedom, one cannot have a sharp phase transition, but only smooth cross-over

behaviour. However, we are interested here in the large N limit of this quantum mechanics.

In the infinite N limit it is possible to have sharp phase transitions - ie. the cross-over

becomes sharper as N is increased, leading to non-analytic behaviour for N → ∞. The

simplest example of this is the Gross-Witten matrix integral which in its large N limit

exhibits a 3rd order quantum phase transition [46]. Indeed the quenched version of our

quantum mechanics theory exhibits a discontinuous confinement-deconfinement transition

at large N , as discussed in [35, 36]. Hence it is then an interesting question as to whether the

supersymmetric theory exhibits smooth thermal behaviour or not at large N . As discussed

above in section 2.1, holographic arguments suggest that the 16 supercharge quantum

mechanics is always in a deconfined phase, ie. the free energy will scale as O(N2). Since

the infra-red properties of the 16 and 4 supercharge theories are qualitatively similar one

might expect the 4 supercharge theory to always be deconfined. Indeed we will see this is

borne out in our results, and we see no evidence of any sharp phase transition.

2.4 Ultraviolet behaviour of the theory

We now consider the UV behaviour of theory, and will show that it is finite. This is

extremely important for what follows as it allows a naive lattice discretization of the action

to recover the full supersymmetry of the theory without fine tuning. Let us consider our

action (2.1). Let us firstly gauge fix the theory so that the gauge field A is constant in
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Figure 1: Relevant diagrams in super Yang-Mills quantum mechanics perturbation theory. The

heavy lines are bosonic and the dashed fermionic. The left 2 diagrams are finite mass renormaliza-

tions going as ∼ Λ−1. The right diagram is a fermionic tadpole loop which, while naively potentially

divergent as ∼ log Λ, is actually also finite going as ∼ Λ−1, the divergence not arising due to form

of the Yukawa gauge interaction.

Euclidean time, ∂τA = 0. This yields a trivial Jacobian, det ∂2
τ , and allows us then to

consider the quantum mechanics partition function Z[A] defined as,

Z =

∫

DA Z[A], Z[A] =

∫

DXi(τ)DΨ(τ)DΨ̄(τ)e−S1−loop−Sint (2.15)

which for fixed A has no gauge dynamics. The unitary matrix A determines the Polyakov

loop as eiRA, and one performs the matrix integral of Z[A] over A to compute the full

partition function Z. The ultraviolet behaviour of the gauged quantum mechanics is de-

termined by the gauged fixed quantum mechanics derived from Z[A]. The final matrix

integral over A does not introduce any new high energy behaviour.

The quadratic and interaction parts of the quantum mechanics derived from Z[A] for

fixed A are given by,

S1−loop = Tr

∮ R

dτ

{

1

2
(Dτ X̃i)

2 + i ˜̄Ψσ̄τDτ Ψ̃

}

(2.16)

and,

Sint = Tr

∮ R

dτ

{

−1

4

λ

N

[

X̃i, X̃j

]2
−

(

λ

N

)1/2
˜̄Ψσ̄i

[

X̃i, Ψ̃
]

}

, (2.17)

where we have rescaled the fields Xi = (λ/N)1/2X̃i and Ψ = (λ/N)1/2Ψ̃ to obtain canonical

kinetic terms.

Consider now performing perturbation theory in the coupling λ, and introducing a high

energy cut-off Λ. Clearly quantum mechanics is always super-renormalizable. In general

this does not preclude divergences, but simply means there can only be a finite number of

them. Consider the two boson mass renormalization diagrams shown in figure 1. In both

cases the loop propagators contribute ∼ 1/p2, and the loop integral
∫ Λ

dp/p2 ∼ O(Λ−1) is

independent of the cut-off. However for the last diagram in the figure the fermion tadpole

loop has only a ∼ 1/p contribution from the fermion propagator, and superficially the

loop integral goes as
∫ Λ

dp/p ∼ O(log Λ) and hence depends on the cut-off. The only
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divergences in the perturbation theory for this Yang-Mills quantum mechanics come from

such fermion tadpole loops.

However, let us consider more carefully the fermion loop in the tadpole. Whilst it

superficially diverges we will see the gauge and global symmetries actually render the dia-

gram finite. We introduce XA
i = Tr TAXi and ΨA

α = TrTAΨα where TA are the generators

of SU(N) in the adjoint representation. The generators obey [TA, TB ] = ifABCTC with

antisymmetric structure constants fABC , and are normalized so that Tr TATB = δAB .

Then we may write the fermionic interaction term in (2.17) as,

Lferm ∼ fABCΨ̄A
α̇ σ̄iα̇αΨC

α XB
i (2.18)

The fermion propagator in momentum space is given by,

1

iσ̄τ,α̇αDAB
τ

=
1

δα̇α(iδABp + fABCAC)
=

δABδα̇α

ip
+ O

(

1

p2

)

(2.19)

where the subleading terms at large momentum involve the gauge matrix A. The tadpole

loop for an incoming boson XC
i will therefore contribute an integral proportional to,

∫ Λ

dp

(

fABCδAB
Tr(σ̄i)

p
+ O

(

1

p2

))

= O(1)

∫ Λ

dp
1

p2
∼ O(Λ−1) (2.20)

where now we see the potentially divergent leading term actually vanishes identically due

to both the anti-symmetry of the structure constants, fABCδAB = 0, and also the fact

the Pauli matrices are traceless so Tr(σ̄i) = 0. Hence we see that actually the fermion

tadpole loops, and therefore all diagrams in this theory, are cut-off independent provided

that the momentum regulator preserves the gauge and global symmetry and hence the form

of the Yukawa interaction term above. This implies that we can regulate our theory with

impunity, and providing we have correctly maintained the degrees of freedom given by the

quadratic action above, and the gauge and global symmetry, we should expect to recover

the correct theory when we remove the regulator, and in particular all its supersymmetries.

This applies to the naive lattice regulator we are interested in here.

How generic is this stability against UV radiative corrections? Suppose we wished to

study the 2 dimensional version of the holographic correspondence we would then have a

similar 2-d Yang-Mills theory to compute with, and in this case now the mass renormaliza-

tion diagrams in figure 1 above are divergent, since
∫ Λ

dp2/p2 ∼ O(log Λ) as the regulator

is removed. Unlike the quantum mechanics case there are no internal symmetries preserved

by a naive momentum regulator that mean the superficial divergence is avoided. Hence a

naive discretization is not guaranteed to give a continuum limit preserving supersymmetry,

and one would have to perform a lattice perturbation theory calculation to compute the

potential counter-terms that would have to be added to counteract this, as for example

in [47, 48]. Notice that the absence of such counter terms in Yang-Mills quantum mechan-

ics is not generic for all quantum mechanics models. For example, Giedt et al [32] have

studied the case of Witten’s supersymmetric quantum mechanics,

S′ =

∫

dτ

{

1

2
ẋ2 + h′(x)2 + ψ̄ψ̇ + h′′(x)ψ̄ψ

}

(2.21)
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Figure 2: Relevant diagrams in perturbation theory for Witten’s supersymmetric quantum me-

chanics for a quartic superpotential. The left diagram, a mass renormalization, is due to the quartic

superpotential term. The right diagram is a fermion tadpole loop due to the cubic term. Both are

divergent going as ∼ log Λ.

Here x is a bosonic field, and ψ fermionic, and if we take a superpotential as h(x) =

mx2 + γx3 + λx4, then a mass renormalization term is generated as in figure 2 from the

quartic piece, and the cubic piece gives rise to the fermion tadpole shown in the same

figure. Naive power counting shows that both superficially diverge as
∫ Λ

dp/p ∼ O(log Λ),

and this time there is again no internal symmetry, preserved by the naive momentum cut-

off, which protects the theory from this divergence. Hence, when discretizing this theory

naively one might expect to generate UV sensitive radiative corrections, and hence break

supersymmetry unless the discretization preserves the supersymmetry manifestly. Indeed

this was confirmed in [49, 32, 31] for the quartic term. So we see that the fact that we are

able to discretize our super Yang-Mills quantum mechanics is a result not only of its low

dimension, but also its interaction structure, in particular, the gauge and global symmetry

which constrains the boson-fermion interaction vertices which are potentially dangerous in

quantum mechanics.

Since we are discussing quantum mechanics we may equivalently use the language

of operator ordering in order to discuss the UV behaviour of the theory. Starting from a

Hamiltonian operator we may construct a lattice path integral discretized in time, by using

the Hamiltonian to propagate states forward by a small time step in the usual manner.

Different operator orderings in the Hamiltonian will give different discrete lattice path

integrals. If there is a physical ordering ambiguity the continuum limit of the discrete

path integral will yield different physical theories depending on the details of the ordering

used. If there is no ordering ambiguity, any ordering will yield the same continuum physics.

Hence we see that in general different naive discretizations of an action will correspond to

Hamiltonians with different operator orderings, and if there is a physical ambiguity, then

different naive lattice actions will give different continuum physics.

We consider again the example of Witten’s supersymmetric quantum mechanics. As-

sociated with the continuum interaction term h′′(x)ψ̄ψ in the action is the interaction

Hamiltonian,

Ĥ ′
ferm = b̂†b̂ h′′(x̂) (2.22)

with anticommuting fermionic operators b̂, b̂† so that {b̂†, b̂} = 1. This is the only term in
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the Hamiltonian which is sensitive to operator ordering, as the bosonic interaction term

involves only x̂ and not its momenta. Indeed we see that changing the operator ordering

of the fermions changes the purely bosonic interaction terms in the Hamiltonian. For the

general ordering,

Ĥ ′
ferm =

(

(1 − ξ)b̂†b̂ − ξb̂b̂†
)

h′′(x̂) + ξh′′(x̂) (2.23)

for some ξ we see we have added ξh′′(x̂) to the bosonic interaction term. Consider the

supercharges for this theory,

Q̂ =
(

P̂ + h′(x̂)
)

b̂, Q̂† = b̂†
(

P̂ − h′(x̂)
)

(2.24)

and so,

Ĥ ′ =
{

Q̂†, Q̂
}

= P̂ 2 + h′(x̂)2 + h′′(x̂)
[

b̂†, b̂
]

. (2.25)

Hence we see that supersymmetry requires a particular fermion operator ordering. From

our discussion above, a naive discretization of the action will correspond to a Hamiltonian

with some operator ordering, and in general it will not be the one required above by

supersymmetry. Thus naive discretizations will generically lead to continuum theories

which are not supersymmetric as the continuum bosonic potential will be incorrect. This

argument tallies with our previous considerations of UV behaviour in Witten’s quantum

mechanics from perturbation theory above.

Consider now our Yang-Mills quantum mechanics. We again introduce XA
i = Tr TAXi

and ΨA
α = Tr TAΨα. This fermionic interaction in (2.18) is associated to a Hamiltonian

interaction term,

Ĥferm = fABC b̂†Aα̇ σ̄iα̇αb̂C
α X̂B

i (2.26)

where the fermionic operators b̂†Aα̇ , b̂A
α anticommute as,

{b̂†Aα̇ , b̂B
α } = δABδα̇α. (2.27)

Again this is the only term in the action which might be sensitive to operator ordering,

as the bosonic quadratic interaction term involves only the Xi and not their momenta.

However,

σ̄i,α̇αfABC{b̂†Aα̇ , b̂C
α } = fABCδABTr(σ̄i) = 0 (2.28)

due to both the antisymmetry of the structure constants and also the traceless property of

the Pauli matrices. We see that changing the operator ordering in this term introduces no

additional bosonic terms. From our discussion above, since the form of the Hamiltonian

is invariant under ordering, naive lattice discretizations will lead to the supersymmetric

continuum physics we are interested in. Thus again we see that while the Yukawa cou-

plings in our supersymmetric gauge quantum mechanics superficially could render a naive

discretization non-supersymmetric in the continuum, the precise structure given by gauge

invariance and global symmetry ensures that this does not happen.

We note that since the form of the 16 supercharge action is the same as that of the 4

supercharge theory, we expect the same argument to ensure that a naive discretization of

the 16 supercharge theory will also regain full supersymmetry in the naive continuum limit.
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3. Two lattice actions

We now discuss the two actions we have used to simulate the 4 supercharge quantum

mechanics - a naive discretization of the continuum theory and a manifestly supersymmetric

lattice action. The naive action follows the standard rules for discretizing a gauge theory.

We will show that the resulting fermion determinant is positive real, which much simplifies

simulation. While the lattice action preserves no supersymmetry, we have argued above

that since the quantum mechanics is free from UV divergences provided gauge and global

symmetries are preserved by a UV regulator, all the supersymmetries will be restored in

the continuum limit - this argument also applies to the 16 supercharge theory of interest for

future work. The supersymmetric action arises from discretizing a twisted or cohomological

formulation of the continuum Yang-Mills theory in which nilpotent scalar supercharges can

be constructed as linear combinations of the original supercharges. In this case we show

that half of the original supersymmetry of the continuum theory can be preserved in the

discrete theory.

3.1 Naive lattice action

In this section we consider a naive discretization of the 4 supercharge quantum mechanics.

Firstly we rewrite the action using a dimensionless compact coordinate θ, so τ = R θ,

where θ has unit period θ ∼ θ + 1. We create our discrete lattice choosing M lattice sites

at position θn = an, with a the discretization length 1/M . We use R to make our lattice

fields dimensionless, and denote the variable at lattice site n = 0, 1, . . . ,M − 1 with a

subscript Xa,Ψa so that,

Xi(R θn) = R−1Xi,n, and Ψα(Rθn) = R−3/2Ψα,n (3.1)

Since we are taking compact Euclidean time we must identify X0 = XM ,Ψ0 = ±ΨM , with

the sign for the fermions giving periodic or antiperiodic (thermal) boundary conditions.

An important consideration is to avoid fermion doubling on the lattice. This problem

is encountered if one replaces continuum derivatives by symmetric difference operators.

The resulting fermion operator possesses additional light states – “doublers” which do not

decouple as the lattice spacing is sent to zero. Theorems guarantee the appearance of such

states in any local, translationally invariant and chirally symmetric theory. One simple way

to remove these unwanted states is to add a so-called Wilson mass term ar△ to the lattice

action where a is the lattice spacing, △ is the Laplacian, and r is some non-zero constant.

This term lifts the doublers to have mass O(r/a), leaving the physical modes light. For our

naive simulations we have employed an r = 1 Wilson term, which in quantum mechanics,

yields the simple Euler discretization prescription Ψ̇a = (Ψa+1 − Ψa)/a.

We introduce unitary adjoint link fields, Ua, to implement the gauge invariance. Gauge

freedom allows us to fix the link variables on a spanning tree which in our one dimensional

case means there is one unitary degree of freedom for the whole lattice and we may choose

how to represent it. For the purpose of simulating the theory a convenient choice is a gauge

where all the links are equal U = Ui. We may think of U as representing the holonomy of
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the gauge connection about the time circle, so that the Polyakov loop is simply given as,

ei
H

Adτ = UM . (3.2)

Note that the Jacobian introduced by the gauge fixing to set all the links equal is trivial.

Now we may naively discretize the action as,

S =
N

β3

M−1
∑

a=0

Tr

[

1

2a

(

Xi,a−UXi,a−1U
†
)2

− a

4
[Xi,a,Xj,a]

2+δα̇αΨ̄α̇,a

(

Ψα,a−UΨα,a−1U
†
)

− aσ̄i,α̇αΨ̄α,a[Ψα,a,Xi,a]

]

(3.3)

where again we note the Euler differencing of the fermion kinetic term is free of doublers.

Finally we may rescale the fields by powers of the lattice spacing a = 1
M to remove the

explicit a-dependence from the individual terms in the action. This results in a rescaling

of the lattice coupling N
β3 → NM3

β3 .

Let us now show that integrating out the quadratic fermion term gives rise to a positive

real determinant. As above we again introduce XA
i = Tr TAXi and ΨA

α = TrTAΨα. Taking

the generators TA to be Hermitian, they obey [TA, TB ] = ifABCTC with the SU(N)

structure constants fABC being real. Since Xi are Hermitian the components XA
i are real.

We then define the fermion operator from the above action so that the fermionic part is

given by, Ψ̄A
α̇,aOα̇α,AB

ab ΨB
α,b, and we have,

Oα̇α,AB
ab = δα̇α

(

δABδab − δa,b+1TrTAUTBU †
)

− i a fABC σ̄i,α̇αδabX
C
i,a. (3.4)

Following a related argument in [45] we see that,

σ2OAB
ab σ2 =

(

OAB
ab

)⋆
(3.5)

and hence any eigenvector vαAa of O having eigenvalue λ will be paired with another

eigenvector (σ̄2,α̇αvαAa)
⋆ with eigenvalue λ⋆.1 Since the determinant of O is the product

of its eigenvalues, we see it is real and positive. This is very nice as it ensures that in

the naive discretization we can, in principle, exponentiate the fermion determinant, and

use Monte-Carlo methods to straightforwardly simulate the resulting action. Hence for

our naive code there is no ‘sign problem’. The manifestly supersymmetric formulation we

discuss next does suffer a sign problem and our simulations will be performed in the phase

quenched approximation. However the majority of the results, in particular all the thermal

results, are obtained using this naive lattice action.

Notice that we used properties of the Weyl representation, and this no longer holds

for the 16 supercharge theory. Indeed, already in the 16 supercharge matrix integral, the

Pfaffian obtained from integrating out the fermions is not positive [38]. Thus in the 16

supercharge case, using a naive action one would likely have to take the absolute value of

the Pfaffian and then use ‘reweighting’ to simulate the phase. How effective this would be

would then depend on how important this phase is in the physical regime of interest.

1We note that for a 2-vector x and a constant λ, the vector equation (σ̄2
x)⋆ = λ x has no solution unless

λ is zero. Hence every eigenvector vαAa will be paired with a linearly independent eigenvector (σ̄2,α̇α
vαAa)⋆.
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3.2 Manifestly supersymmetric lattice action

A lattice action which possesses an exact supersymmetry may be derived by dimensional re-

duction of the supersymmetric lattice action for two-dimensional twisted four supercharge

Yang-Mills theory described in [23, 39]. In the twisted formulation of the two dimen-

sional theory the fermions are naturally embedded as components of a two dimensional

Kähler-Dirac field with components (η/2, ψµ, χ12) together with bosonic superpartners

(φ,Aµ, B12). Dimensional reduction along the x2-direction results in a one dimensional

supersymmetric theory and is associated with the field redefinitions

χ12 → χ1

B12 → B1

ψ2 → κ

A2 → φ3 (3.6)

The resulting action may be written as

S =
NM3

β3
Q

∑

x

Tr

(

χ†
1(B1 + 2D+

1 φ3) + ψ†
1D

+
1 φ + κ†[φ3, φ] +

1

4
η†[φ, φ] + h.c

)

(3.7)

where the scalar supercharge arising from the twisting process has the following action on

the fields

QU1 = ψ1 (3.8)

Qψ1 = −D+
1 φ

Qφ3 = κ

Qκ = −[φ3, φ]

Qχ1 = B1

QB1 = [φ, χ1]

Qφ = η

Qη = [φ, φ]

Qφ = 0

It is straightforward to verify that Q2 acts like a gauge transformation on a generic field

f which is taken to lie in the adjoint of the gauge group and of the form f =
∑N2−1

i=1 faT a

where in this section we employ antihermitian generators T a. The Q-exact structure of

the action then guarantees the discrete action will be supersymmetric. To avoid fermion

doubling a covariant forward difference operator is utilized whose action on lattice scalar

fields is given by

D+
1 φ(x) = U1(x)φ(x + 1̂) − φ(x)U1(x) (3.9)

where U1(x) is the usual Wilson gauge link.2 Notice that several of these fields, such as

U1(x), carry a vector index. In the continuum this is redundant for a one dimensional

2actually a complexified version of it since the construction requires the lattice fields be taken complex
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theory but in this lattice construction the index plays an important role, indicating that

such fields live on the links of the lattice and transform under gauge transformations as

f1(x) → G(x)f1(x)G†(x + 1̂) (3.10)

where G(x) = eφ(x). The corresponding transformation for scalar or site fields is

f(x) → G(x)f(x)G†(x) (3.11)

These transformation reduce to the usual continuum ones in the naive continuum limit.

Notice also that the definition of the forward difference operator when acting on a site field

automatically produces a vector or link field with the correct lattice gauge transformation

properties.

Carrying out the Q-variation and integrating out the auxiliary field B1 we find the

following lattice action

S =
NM3

β3

∑

x

Tr



−
3

∑

i=1

Xi − D−D+Xi −
3

∑

i>j

[Xi,Xj ]2 − λi†
1 D+

1 ρi − ρi†D−
1 λi

1 + SYK





(3.12)

where we have written φ = X1 + iX2, φ = X1 − iX2, φ3 = X3 and the covariant backward

derivative D−
1 , which is adjoint to D+

1 , acts on link fields in the following way

D−
1 ψ1 = ψ1(x)U †(x) − U †(x)ψ1(x − 1̂) (3.13)

We have also relabeled the fermions according to

λ1
1 = ψ1 (3.14)

λ2
1 = χ1

ρ1 =
η

2

ρ2 = κ

Notice that the bosonic action is real positive definite on account of the antihermitian basis

for the fields. The Yukawa interactions take the form

SYK = ρ2†[X1, ρ2] − iρ2†[X2, ρ2] − ρ1†[X1, ρ1] − iρ1†[X2, ρ1] (3.15)

+λ1†
1 [X1, λ1

1] − iλ1†
1 [X2, λ1

1] − λ2†
1 [X1, λ2

1] − iλ2†
1 [X2, λ2

1]

+
{

λ1†
1 [X3, λ2] − ρ2†[X3, ρ1] + h.c

}

While the bosonic action arising in this discretization is rather similar to the naive action

described in the previous section, differing mainly in the definition of the lattice derivative,

it is clear that the fermionic action is quite different — the fermions can be assembled into

a four component object which in the continuum is just the usual Majorana fermion of four

dimensional N = 1 super Yang-Mills. Thus the result of integrating out the fermions in this
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twisted formulation is to produce a Pfaffian rather than the determinant encountered with

the naive discretization.3 Of course, in the continuum, one can find a change of variables

which allows the Pfaffian to be rewritten as a simple determinant but this is no longer true

in the lattice construction. Indeed the complex two component spinor encountered in the

naive formulation takes the form
(

χ1 + iη/2

ψ1 + iκ

)

(3.16)

Since the different component fields carry different gauge transformation properties this

spinor does not transform simply under lattice gauge transformations and cannot be used

to construct a gauge invariant lattice action. A more difficult question relates to the com-

plex nature of the lattice fields. To write down fermion kinetic terms which are gauge

invariant on the lattice requires the introduction of two lattice fields for each continuum

field eg. ψµ(x) and ψ†
µ(x) with the latter field transforming like the adjoint of the first. Ex-

act supersymmetry then implies that the bosonic fields (at least with non-zero spin) must

also be complexified - thus the gauge links are non-unitary matrices in the supersymmetric

formulation.

To target the correct continuum theory requires choosing the path integral along a

contour such that the imaginary parts of all fields are zero. This is what is done in our

simulations — the links are chosen unitary and the determinant resulting from integration

over the fermions is replaced by a Pfaffian. The question then arises as to whether the

supersymmetric Ward identities are satisfied along this path. The latter are Q-exact and

hence by standard arguments can be evaluated exactly in the semiclassical limit in which the

fields are expanded about their classical solution [28]. In this limit the imaginary parts of

the gauge field are zero and the antisymmetry of the fermion operator ensures that the real

and imaginary parts of the fermion fields decouple and the computation can be consistently

truncated to the real line. These theoretical arguments are strengthened by the results of

Monte Carlo calculations which support the existence of an exact Q-supersymmetry in the

quantum continuum limit [39, 50].

Finally notice that this lattice action actually possesses a global symmetry of the form

ρ1 → ρ2 (3.17)

λ1
1 → λ2

1

X1 → −X1

X2 → X2

X3 → X3

This symmetry combined with the original Q-supersymmetry leads to the lattice action

possessing a second exact supersymmetry. The existence of this second supersymmetry

is consistent with the results of orbifold construction of lattice supersymmetric models

described in [15].

3As noted earlier, this Pfaffian is in general complex, and we simulate it in a phase quenched approxi-

mation. However, we emphasize that the majority of the results in the paper are generated using the naive

action which has real positive determinant and hence no phase problem.
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4. Results

In this section we discuss the results of lattice simulation of our two implementations. We

begin by considering the quenched theory, move onto the periodic theory and end the sec-

tion by discussing the thermal theory. The results for the quenched theory agree precisely

for the naive and supersymmetric actions since they differ only in their treatment of the

fermions. As we discuss, the naive and supersymmetric implementations both give compat-

ible results for the periodic theory. In practice the naive implementation is computationally

easier since the corresponding fermion operator is half that of the supersymmetric formula-

tion and, as we have shown, is real and positive, whereas in the supersymmetric formulation

we work in the phase quenched approximation. Hence the bulk of the periodic results were

generated with the naive action. In the case of the thermal system the situation is more

interesting - for coarse lattice spacings and a small number of colors we observed that

both codes suffered from strong lattice artifacts most visible in the distribution of scalar

eigenvalues which developed long tails out to large eigenvalue — a situation quite different

from the complementary runs with periodic boundary conditions. We observe that this

stems from very large fluctuations of the scalars in the classical moduli space — for the pe-

riodic system the corresponding bosonic zero mode is strongly suppressed by its fermionic

superpartner but in the thermal case the would be fermionic zero mode is lifted by the

antiperiodic boundary conditions and is less effective at finite β at suppressing these zero

mode effects. This problem appears to be worse for the supersymmetric action and hence

we have again derived the bulk of our thermal results from the naive action runs. In the

latter case these effects appeared negligible for N ≥ 5 and M ≥ 5.

We have examined the following expectation values. We normalize the expectation

value of the fermionic action as,

SF =
1

2M(N2 − 1)
〈Sfermionic〉 (4.1)

and a simple scaling argument gives the Schwinger-Dyson equation SF = 1 which we then

use to check the equilibration of our runs. We also compute the bosonic action as,

SB =
1

N2
(〈Sbosonic〉 − Szero) (4.2)

where we have subtracted the extensive zero point energy contribution, which is given

explicitly as 3
2M(N2 − 1) for both actions as can easily be seen in the weakly coupled high

temperature limit. For the supersymmetric lattice action we have SB = 0 for all β since it

is related to an index [23]. For the naive periodic theory we expect SB to approach zero

as the number of lattice points M → ∞. We have normalized the bosonic action by N2 to

ensure that SB should tend to a constant at large N in a deconfined phase.

This form of the bosonic action has an additional interpretation in the thermal and

quenched theories as yielding a measurement of the dimensionless mean energy of the

system, 〈E〉. This dimensionless energy is given by the usual relation 〈E〉 = −∂ ln Z
∂β so that,

SB = −β

3
〈E〉 . (4.3)
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Thus the vanishing of (the subtracted) SB in the periodic theory corresponds to the usual

requirement that the supersymmetric theory have vanishing vacuum energy at zero tem-

perature.

We are also interested in the behaviour of the Polyakov loop variable, and we compute

the expectation value of its modulus,

P =
1

N

〈

|Trei
H

Adτ |
〉

(4.4)

and also its corresponding susceptibility

dP =
1

N

〈

|
(

Trei
H

Adτ
)2

|
〉

−
〈

|Trei
H

Adτ |
〉2

. (4.5)

We note the inclusion of 1/N in these definitions to ensure that at large N in a deconfined

phase, P , dP should tend to a constant.

We have also computed the distribution of eigenvalues of the scalar fields, rendered

dimensionless as RXi(τ), and averaged over the lattice. We have seen no evidence of broken

SO(3) symmetry4 and so assume the distribution for i = 1, 2, 3 is the same, and denote

it as x(µ). We observe this appears to have a well-defined large N -limit with a width

which is controlled by β. From our earlier discussion of the 1-loop eigenvalue potentials we

deduced that well separated dimensionless eigenvalues were attracted together until they

entered a strongly coupled infra-red regime when their separation goes as ∼ β1/4. This

therefore is the expected scale characterizing the parametric dependence of the width of

the distribution x(µ), and indeed this is borne out by our results later.

For SU(N) the distribution has N peaks localized close to the origin, and as we have

discussed, we expect the distribution to fall off most slowly for the periodic theory, going as

x(µ) ∼ |µ|−3 for large µ. This tail appears to be universal for periodic boundary conditions

depending on β but not N [50]. This power law tail means that the standard deviation of

the distribution is in principle ill-defined as an observable, at least for periodic boundary

conditions. Therefore in order that we may characterize the quenched, periodic and thermal

theory scalar distributions we define the width by the observable,

W = β−3/4

∫

dµ |µ| x(µ) (4.6)

which is well defined even for the expected tail behaviour of the periodic theory.

4.1 The quenched approximation

We begin by discussing the quenched theory, where the fermions are simply ignored. The

lattice simulation of this bosonic theory is then a very tractable problem, and one can

easily work at large N and establish the ’t Hooft scaling. Such gauged quantum mechanics

with adjoint scalar fields was originally studied in [35, 36] where evidence was given that

the theory undergoes a large N confinement/deconfinement transition. We now review this

4We note that at finite N such a spontaneous symmetry breaking is not possible, although it is unclear

whether this conclusion remains valid in the large N limit.
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0 0.5 1 1.5 2 2.5β�1.2�1�0.8�0.6�0.4�0.20<S > SU(5)SU(8)SU(12)SU(16)
Quenched theory, 5 lattice pointsB

0 0.5 1 1.5 2 2.5β0.20.40.60.81P SU(5)SU(8)SU(12)SU(16)
Quenched with 5 lattice points

0 0.5 1 1.5 2 2.5 3β00.511.522.533.544.5
dP SU(5)SU(8)SU(12)SU(16)Quenched with 5 lattice points

0 0.5 1 1.5 2β0.50.550.60.650.70.75
W SU(5)SU(8)SU(12)

Quenched theory, 5 lattice points

Figure 3: Plots of action SB, Polyakov loop P , its susceptibility dP and the scalar width W for

the quenched theory for varying N , and 5 lattice points.

behaviour as it indicates where the interesting dynamics in the unquenched theory is likely

to occur, and how we might see this in the available observables.

The first observation we may make from the quenched theory is that the continuum

limit is very easy to obtain. In the appendix D we show the bosonic action and Polyakov

loop for different numbers of lattice points M = 5, 8, 12. We see that the results we obtain

for all these quantities on a lattice with M = 5 are very close (within one percent) to

those with M = 8, 12. Indeed we find this to be true for all the observables we measure

in the quenched, periodic and thermal theories (with the exception of the bosonic action

for the naive periodic theory which we discuss later). Hence, in the main text, results are

calculated using M = 5 lattice points unless otherwise stated. Certainly, in the case of the

unquenched theory, the statistical errors in most of our measurements are larger than the

systematic discretization error incurred by using the small lattice for the range of β studied.

In figure 3 we plot the expectation value of the bosonic action SB, the expectation

value of the modulus of the Polyakov loop, P , and its corresponding susceptibility dP for

various numbers of colors N up to 16. Indeed it would be easy to compute at larger N but

this is not our objective here. As observed earlier in [35, 36] we see that there appears to

be a sharp, probably first order, large N phase transition in behaviour. From the peak in

our susceptibility plot we estimate the critical coupling as β = βc ≃ 0.85. In particular,

the Polyakov loop variable P remains finite for β < βc, but appears to be consistent with
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0 0.1 0.2 0.3 0.4 0.5

1

2

3

4
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0 0.5 1 1.5 2β00.20.40.60.81P NaiveSusy
Periodic SU(3) with 5 lattice points

0 0.5 1 1.5 2 2.5β00.10.20.30.40.50.6
dP SusyNaive

Periodic SU(3) with 5 lattice points

Figure 4: Top: Plot comparing scalar field distributions for the 2 implementations with periodic

fermions (bars for naive, dots for supersymmetric; left β3 = 0.1, right β3 = 2.0). Bottom: the

Polyakov loop P and its susceptibility dP for N = 3 and 5 lattice points.

zero at large N for β > βc (see [35, 36] for data with N up to 30). Furthermore, the mean

energy 〈E〉 appears to suffer a discontinuity around the critical point.

Notice also that the linear regime observed in SB at large β is consistent with a non-zero

vacuum energy — the latter being given by the slope of SB = −β/3〈E〉 with respect to β at

large β. This is, of course, consistent with what one would expect for a non-supersymmetric

theory. Conversely the observed β-independence of SB at high temperature (small β) is

consistent with the expected classical thermal behavior 〈E〉 ∼ N2T for a theory possessing

N2 deconfined gluons.

4.2 Full supersymmetric theory: Periodic

We now focus on the theory with dynamical fermions having periodic boundary conditions

- ie. the theory in finite volume and zero temperature. Our task is to compare the results

obtained from our two independent implementations - the naive and supersymmetric - and

show they are consistent, and produce the correct supersymmetric continuum physics.

Figure 4 shows a comparison of the Polyakov loop observable P and its susceptibility

dP for the two lattice implementations in the case of N = 3 and M = 5 lattice points.

We see the results are in in rather close agreement, in fact within statistical error, for P ,

dP . The close agreement is a good check on both implementations as it indicates that
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1 2 3 4 5 6 7 8 9 10 11 12 13M Þ lattice pointsé0.2é0.15é0.1é0.050<S > λ = 0.5λ = 1.0λ = 2.0
Periodic SU(3)B

0 1 2 3 4 5 6 7 8 9M � lattice points�0.3�0.25�0.2�0.15�0.1�0.050<S > λ = 0.5λ = 1.0λ = 2.0
Periodic SU(5)B

Figure 5: Plots of the bosonic action SB for the naive discretization with periodic fermion boundary

condition for N = 3 (left) and N = 5 (right) for increasing lattice size M = 5, 8, 12 for 3 values of

β3 = 0.5, 1, 2.

0 0 .5 1 1.5 2β

-0 .0 15-0 .0 1-0 .00500 .0050 .0 10 .0 15<S > B f or manifest SUSY acti on

Figure 6: Plot of the bosonic action SB for the supersymmetric discretization with periodic fermion

boundary condition for N = 5 with M = 5 lattice points. We see it is consistent with zero as we

expect.

lattice spacing effects appear to be small and supports the claim that the M = 5 runs

with naive action yield results which are already decent approximations to the continuum.

The figure also shows a detailed comparison of the scalar eigenvalue distributions for the

naive and supersymmetric actions and again reasonable agreement is seen. We study the

continuum behaviour of the naive periodic theory in appendix D, and confirm that the

observables P and dP are close to their continuum values by simulating at M = 8 and 12

lattice points. Given constraints on resources we have not been able to compute for larger

N in the supersymmetric implementation and therefore cannot check the agreement there.

We show the action SB for the supersymmetric implementation in figure 6 for N = 5

and 5 lattice points and see that it is consistent with zero, as we expect for the vacuum

energy of a system with exact supersymmetry.

Figure 5 shows the bosonic action SB for the naive theory at three representative
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0 0.5 1 1.5 2β00.20.40.60.81P PeriodicQuenched
SU(3) with 5 lattice points

0 0.5 1 1.5 2 2.5β00.10.20.30.40.50.6
dP PeriodicQuenched

SU(3) with 5 lattice points
0 0.5 1 1.5 2β0.50.70.9

W PeriodicQuenched
SU(3) with 5 lattice points

Figure 7: Plots of the Polaykov loop P , its susceptibility dP and the scalar width W for the

periodic theory for N = 3 with 5 lattice points, also compared to the quenched theory.

values of β3 with N = 3, 5 as a function of increasing numbers of lattice points. While

by construction this vanishes in the supersymmetric theory, in the naive theory we only

expect it to vanish in the limit M → ∞. We see, both for N = 3 and 5 and fixed β3, that

the numerical results are indeed consistent with SB decreasing to zero as M increases. The

time taken to compute larger lattice sizes with reasonable statistical errors has prohibited

extending these plots to higher numbers of lattice points. While the approach to the

continuum value of the action is rather slow, appearing to go as ∼ 1/Mp with p ≃ 1
4 − 1

2 ,

even for the modest number of lattice points M = 5 its actual value is already rather small

compared to the quenched or thermal theory (eg. see figures 3 and 8) for these values of β.

In figure 7 we plot the Polyakov loop P , its susceptibility dP and the scalar eigenvalue

distribution width W for N = 3 compared with those of the quenched theory. Interestingly,

while the action and scalar distribution width are different to the quenched theory, the

Polyakov loop behaves rather similarly. In figure 8 we also see the same is true for N = 5.

We have currently not simulated the periodic theory for N > 5 and therefore cannot

confirm this correspondence with the periodic theory occurs in the large N limit. If it

does, it leads to the interesting conclusion that while the bosonic action SB is a constant

in the periodic continuum theory independent of volume and coupling, the behaviour of

the Polyakov loop may nevertheless not be smooth in the large N limit.

We note also that the scalar eigenvalue width is broader for the periodic theory than
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for the quenched. This is consistent with the 1-loop calculations of the potentials on the

classical moduli space where we expect the periodic theory will have power law tails in the

eigenvalue distributions, whereas the quenched will not.

Let us summarize these results. We have compared the supersymmetric and naive

lattice actions for dynamical fermions with periodic boundary conditions. The results are

consistent, and both actions yield the expected behaviour with the supersymmetric version

giving a vanishing bosonic action and the naive version giving a continuum limit consistent

with vanishing bosonic action. Hence our earlier analytic claim that a naive discretization

of the action will give the correct supersymmetric continuum physics appears to be borne

out in practice.

4.3 Full supersymmetric theory: Finite temperature results

We now turn to the most interesting part of our results: the supersymmetric theory at

finite temperature. If we were studying the 16 supercharge theory these lattice simulations

would be dual to a computation of the thermal properties of N D0-branes, and should

reproduce the thermodynamics of black holes described earlier at low temperature. In

the case of the 4 supercharge model studied in this paper no such correspondence exists.

Nevertheless, we might expect on the basis of the one loop calculations described earlier

that this model lies in a similar universality class and so understanding how to extract

continuum results from this model should stand us in good stead for a future simulation

of the thermal 16 supercharge theory.

We have observed that the thermal theory exhibits large lattice artifacts for small

values of N and the number of lattice points M . These lead to an apparent instability in

the scalar eigenvalues. The problems seem most acute with the supersymmetric action and

so we have concentrated on using the naive implementation for the bulk of our thermal

runs. In this case to avoid these strong artifacts we require N ≥ 5, M ≥ 5 for the range of

β we are studying, β3 ≤ 10.0, and then a good lattice continuum limit is seen. We discuss

these effects in more detail in the appendix D, and it is an interesting direction for future

research to better understand how to more stably implement the supersymmetric lattice

action at finite temperature.

We begin in figure 8 by comparing this thermal theory with the previously discussed

quenched and periodic theories for N = 5 and M = 5 lattice points. In appendix D we

show these quantities for increasing lattice size, showing that these 5 lattice point data

already capture the continuum reasonably accurately.

Our expectation for this theory is that at small β (high temperature) the thermal

theory will behave like the quenched theory since the fermions are lifted out of the dynamics

by their thermal mass. On the other hand in the absence of spontaneous supersymmetry

breaking, in the large β limit (low temperature) we expect the energy of the theory to go

to zero and the behaviour to coincide with the periodic theory.

We clearly see from the data that at small β the action SB, Polyakov loop P and scalar

eigenvalue distribution width W do coincide with the quenched behaviour as expected.

Conversely, at large β we see the same observables depart from the corresponding quenched

quantities and approach the periodic results.
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0 0.5 1 1.5 2β»1»0.8»0.6»0.4»0.20<S > ThermalQuenched
SU(5) with 5 lattice pointsB

0 0.5 1 1.5 2β00.20.4
0.60.81P ThermalPeriodicQuenched

SU(5) with 5 lattice points

0 0.5 1 1.5 2 2.5β0.50.70.9W ThermalPeriodicQuenched
SU(5) with 5 lattice points

Figure 8: Plots of the bosonic action SB for the quenched and thermal theories, and the Polaykov

loop P and scalar width W for the quenched, periodic and thermal theories for N = 5 and 5 lattice

points. These quantities are expected to be close to their continuum values.

The variation of the bosonic action, SB, is flatter and apparently smoother than that of

the quenched theory and appears to have a small linear slope for large β, which would imply

a non-zero energy and hence supersymmetry breaking if it were to continue to large values

of β. However, given we have data only to inverse temperatures β ∼ 2.2 it is difficult to say

whether we are really seeing asymptotic behavior — any sublinear behavior would imply

supersymmetry is restored at zero temperature. And the apparent asymptotics may also

be influenced by discretization effects. Indeed, to address the possibility of supersymmetry

breaking one should first extrapolate the data to zero lattice spacing at fixed β and then

examine the β dependence of the extrapolated curve. This extrapolation is beyond our

current resources. Nevertheless, it should be noted that the asymptotic behavior of this

quantity appears to be rather different than that expected for the 16 supercharge theory

where we see from equation (2.8) that holography predicts SB ∼ β−9/5.

Independent of the final conclusion concerning supersymmetry breaking there is little

indication of a discontinuity in the mean energy as a function of β as N increases and

our numerical results are consistent with the existence of just a single phase for all β. In

figure 9 we show the bosonic action SB , Polyakov loop variable P , its susceptibility dP

and the scalar eigenvalue width W for the thermal theory for N = 5, 8, 12. We see the

results confirm the ’t Hooft scaling - recall we expect the observables SB , P,W tend to a

constant at fixed β in the large N limit, as we see confirmed in the data. Whilst in the

quenched theory there is a large N transition, with P vanishing at large N for β > βc, and
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0 0.5 1 1.5 2β00.20.40.60.81P SU(5)SU(8)SU(12)
Thermal with 5 lattice points

0 0.5 1 1.5 2βW1W0.8W0.6W0.4W0.20<S > SU(5)SU(8)SU(12)
Thermal theory, 5 lattice points

B

0 0.5 1 1.5 2β00.20.40.60.811.21.4
dP SU(5)SU(8)SU(12) Thermal with 5 lattice points

0 0.5 1 1.5 2β0.550.60.650.70.750.80.850.90.95
W SU(5)SU(8)SU(12)

Thermal theory, 5 lattice points

Figure 9: Plots of the bosonic action SB, Polaykov loop P , its susceptability dP and the scalar

field width W for the thermal theory for increasing N = 5, 8, 12 with 5 lattice points. These

quantities are expected to be close to their continuum values and show no indication of large N

phase transitions.

the susceptibility diverging at β = βc, we see no such behaviour here for the thermal theory

in the range of β studied. Instead P appears smooth and the susceptibility dP reduces for

increasing N over most of the range of β. While the susceptibility dP appears to exhibit

a broad peak for N = 5 colors, this decreases and shifts rapidly to larger β as N increases

leading us to conclude that there is no transition at finite temperature in the large N limit.

Together with the apparently smooth bosonic action SB and scalar width W we con-

clude that the thermal theory is always in one, presumably deconfined, phase with non-

vanishing P and with bosonic energy O(N2).

5. Discussion

This paper is devoted to a study of four supercharge Yang Mills quantum mechanics at

large N . This work is motivated by the idea that a related model — namely the sixteen

supercharge theory, should be dual to IIA string theory at least at sufficiently low energies
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that it can be approximated by a supergravity theory. In this regime the Yang-Mills model

is strongly coupled and hence we have developed lattice discretizations of the model which

allow for Monte Carlo simulation. Two such discretizations have been studied — a so-

called naive action in which supersymmetry is broken classically by terms of the order the

lattice spacing and a manifestly supersymmetric action which arises from a discretization

of a twisted form of the continuum theory.

We have analytically argued that the quantum mechanics is independent of a UV

momentum regulator provided it preserves the gauge and global symmetries and hence

our naive discretization should give the correct continuum physics. The mean energy and

the Polyakov loop computed with these two discretizations agree well for the case when

supersymmetry preserving periodic boundary conditions are used for the fermions, and the

mean energy of the naive discretization is indeed consistent with vanishing in the continuum

as required by supersymmetry.

The theory has a large classical bosonic moduli space. We have analytically computed

the 1-loop effective action for the bosonic moduli in this theory — both for periodic and

antiperiodic (thermal) fermion boundary conditions and find that the classical moduli space

is lifted and the theory does not suffer from infrared divergences. These analytical results

are in agreement with our numerical work which shows that the eigenvalues of the scalar

fields are localized close to the origin in field space where the low energy behaviour is

strongly coupled.

We have studied the thermodynamic behaviour of the thermal theory for N ≤ 12 and

observe the expected ’t Hooft scaling of thermodynamic quantities. In contrast to the

quenched theory, the behaviour of the thermal theory with dynamical fermions appears

smooth and we find no evidence of a large N phase transition, the theory always appearing

deconfined. This is similar to holographic expectations for the 16 supercharge theory,

although we find that the temperature dependence of the free energy in the 4 supercharge

model is rather different from that expected for 16 supercharges.

It would be very interesting to extend these calculations to the case of 16 supercharges.

This is computationally more challenging with the main problem being how effectively the

Monte Carlo procedures can handle the phase of the Pfaffian arising after integration over

the fermions in that case. This problem is currently being studied. If calculations with this

Pfaffian prove possible it would be extremely interesting as then the lattice model could

be used to further test the duality between gauge theories and gravity and perhaps learn

more about the nature of the gravitational theory in regimes of high temperature where

stringy corrections are not small.
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A. Holographic dual of 16 supercharge quantum mechanics

Following Itzhaki et al [7], we consider the “decoupling” limit of N coincident D0-branes.

We take N large with Ngs fixed, where gs is the string coupling. The decoupling limit is

then defined by considering excitations of these D0-branes with fixed energy while sending

the string length scale to zero so α′ → 0. In this limit the degrees of freedom of the system

split up into those localized near the branes - the ‘near horizon’ excitations - and those

living far from the brane which we are not interested in here.

Depending on Ngs there are two perturbative descriptions of the degrees of freedom

living near the branes. For Ngs ≪ 1 the D0-branes decouple from the ambient 10-d gravity

and the degrees of freedom are well described simply by the worldvolume theory of the D0-

branes whose degrees of freedom are the open strings ending on the branes, with dynamics

governed by the 16 supercharge SU(N) Yang-Mills quantum mechanics. Since we consider

fixed energy excitations and α′ = l2s → 0, the action is just the conventional two derivative

one, the higher derivative α′ corrections being irrelevant. The gauge coupling is then found

to be g2
YM = gsα

′−3/2/(2π)2 and in this Ngs ≪ 1 regime it is small.

For Ngs ≫ 1 the D0-branes couple strongly to gravity and the appropriate perturbative

description is given by the target spacetime supergravity solution for N D0-branes. The

string frame metric is

ds2
IIA = − f

h1/2
dt2 + h1/2

(

1

f
dr2 + r2dΩ2

(8)

)

,

f(r) = 1 −
(r0

r

)7
, h(r) = 1 +

(

R

r

)7

(A.1)

and the dilaton and Ramond-Ramond (RR) gauge field are given as,

eφ = gsh
3

4 , A0 = −1

2

(

1

h
− 1

)

. (A.2)

The solution describes a black hole with temperature T and Bekenstein-Hawking entropy

S,

T =
7

2r0

√

1 +
R7

r7
0

, S =
2

(2π)7g2
s l

8
s

Ω8

(

e−2φh2r8
)

r=r0

(A.3)

using the conventions of [7] with Ω8 the area of a unit 8-sphere. Each brane carries RR

charge, and hence the number of D0-branes is computed from the charge of the black hole

by N =
∫

S8 ⋆F with F the RR field strength, and one finds,

Ngs =
R7

b l7s

(

1 +
r7
0

R7

)1/2

. (A.4)

Hence in the limit Ngs is large the characteristic curvature radius of the solution, estimated

by R, is much larger than the string length and therefore the string worldsheet theory is

weakly coupled, and supergravity is a good approximation. Geometrically this solution has

two regions. One is asymptotically flat 10-d spacetime, the other is the geometry describing
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the ‘near-horizon’ region of the branes. Finite energy excitations in these two regions are

separated from each other by a potential barrier. To take the decoupling limit and focus on

the excitations only in the ‘near-horizon’ region we must fix our physical energy scales of

interest and take α′ → 0. We identify the energy scales we wish to fix as U and U0, where

U =
r

α′
, U0 =

r0

α′
(A.5)

and so U ≥ U0. Then taking α′ → 0 keeping U,U0 fixed we see that Ngs → R7

b l7s
and the

near-horizon geometry becomes,

ds2 = α′

(

U
7

2

2π
√

bλ
(−fdt2) + 2π

√
bλ

(

U− 7

2

dU2

f
+ U− 3

2 dΩ2

)

)

f(U) = 1 − U0

U
(A.6)

with λ = Ng2
YM. In this decoupling limit the entropy becomes,

S =
1

28
√

15π7/2
N2

(

U0/λ
1/3

)9/2
, (A.7)

and the temperature is given by,

T/λ1/3 =
7

16
√

15π7/2

(

U0/λ
1/3

)5/2
. (A.8)

The key statement of Maldacena’s duality is that both these perturbative desciptions

- the Yang-Mills for Ngs ≪ 1 and the stringy black hole for Ngs ≫ 1 - are not limited

to the regime of Ngs where they are perturbatively good. In particular the Yang-Mills

description remains well defined for all Ngs. The string black hole description also persists

for finite Ngs away from Ngs ≫ 1, and for Ngs finite one must take into account stringy

α′ corrections to the description of the black hole in supergravity.

To summarize the correspondence, the claim is that Yang-Mills with coupling gYM

at finite temperature T taken in the large N limit is dual to string theory with target

space given in the large Ngs limit by the near horizon geometry of N D0-branes as above,

given by fixing our thermal energy scale U0 and taking α′ → 0. The dimensionless effective

coupling at finite temperature in the Yang-Mills is given by β3 = λ/T 3. The equations (A.7)

and (A.8) then relate the Yang-Mills quantities to the string theory.

Let us further explore the corrections to the supergravity description of the string

theory above. It is crucial that all curvatures and the dilaton are small in order that

the above supergravity solution is valid. The curvature radius ρ at energy scale U is

characterized by the radius of the sphere in the above geometry, so that in string units,

ρ

α′1/2
∼

(

λ

U3

)1/4

(A.9)

and the dilaton at the radius U is,

eφ ∼ 1

N

(

λ

U3

)7/4

(A.10)
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We also require the temperature T to be large enough that Euclidean winding modes are

not present at the horizon.

Hence we see that provided λ/U3, λ/U3
0 and N are large the supergravity solution

above is a good approximation. In particular the dilaton condition shows we must take the

’t Hooft limit, first taking N to infinity with λ/U3, λ/U3
0 fixed, and then take these large.

If we take the black hole to have a high energy/temperature with λ/U3
0 ∼ 1 we reach

the Horowitz-Polchinski correspondence region where the IIA supergravity breaks down

even at the horizon due to α′ curvature corrections becoming important. One requires

full IIA string theory to describe the horizon region. Conversely for a black hole with

ultra low energy/temperature, so U3
0 /λ ∼ N−4/7, which is outside the ’t Hooft scaling

limit, the dilaton becomes large near the horizon and the string theory becomes strongly

coupled there. It may then be resolved by lifting to M-theory where again one finds 11-d

supergravity is valid. However, we emphasize that provided we remain within the ’t Hooft

scaling regime, we cannot access such low temperatures.

B. Potentials on classical moduli space

We now derive the effective 1-loop actions for the classical zero modes. We compute first

the potential for the quenched theory, and derive the effective coupling controlling the

1-loop integration. Then we proceed to the thermal theory, and finally the periodic theory.

B.1 Quenched case

The results in this subsection are a special case studied in Aharony et al [36]. We expand

our bosonic fields in fluctuations about the classical zero-modes,

Aab(τ) = Aaδab + δAab(τ)

Xi,ab(τ) = xa
i δab + δXi,ab(τ) (B.1)

where the the classical bosonic moduli are Aa, xa
i . We take the fluctuations δA, δXi to have

no constant component in their diagonal terms. We will shortly expand these fluctuations

in harmonics so,

δAab(τ) =
1√
2π

∞
∑

m=−∞

δA
(m)
ab e

2π
R

imτ

δXi,ab(τ) =
1√
2π

∞
∑

m=−∞

δX
(m)
i,ab e

2π
R

imτ (B.2)

and thus δA
(0)
ab , δX

(0)
i,ab vanish when a = b. Since Aab(τ),Xi,ab(τ) are Hermitian fields,

we have (δA
(m)
ab )⋆ = δA

(−m)
ba and (δX

(m)
i,ab )⋆ = δX

(−m)
i,ba . Since the gauge group is SU(N),

the sums
∑

a Aa,
∑

a xa
i vanish. We define the dimensionless ∆Aab = R(Aa − Ab) and

∆xab
i = R(xa

i − xb
i), and the following quantities,

δΦµ,ab = (δAab, δXi,ab)

Dab
µ =

(

R∂τ + i∆Aab, i∆xab
i

)

(B.3)
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We may now write the action to quadratic order in the perturbations, obtaining,

S1−loop =
N

λR2

∫

dτ
∑

a<b

δΦ⋆
µ,abM

ab
µνδΦν,ab (B.4)

where,

Mab
µν =

1

2

(

Dab
µ Dab

ν − δµν(Dab
ρ )2

)

. (B.5)

We must take care with the action since we have not fixed a gauge. The gauge transforma-

tion generates a bosonic fluctuation δΦµ,ab = Dab
µ λab for arbitrary functions λab of τ and

correspondingly we see,

Mab
µνDab

ν = 0 ∀ a, b (B.6)

We choose to use the gauge freedom to fix the gauge δAab(τ) = 0, and hence the gauge field

is diagonal and constant in τ . This gauge fixing introduces a Jacobian factor of
∏

a,b det Dab
τ

from the path integral measure. In the case of the constant modes on the circle, this is just

the familiar Vandermonde determinant. Now the quadratic action becomes,

S1−loop =
N

λR2

∫

dτ
∑

a<b

(

δX⋆
i,abM

ab
ij δXj,ab

)

−
∑

a,b

ln |det Dab
τ | (B.7)

We may now expand in Fourier modes to obtain,

S1−loop =
N

λR

∑

a<b

∞
∑

m=−∞

(

δX
⋆(m)
i,ab M

(m)ab
ij δX

(m)
j,ab

)

−
∑

a<b

∞
∑

m=−∞

ln
(

D(m)ab
τ

)2
(B.8)

where D
(m)ab
α = (2πim + i∆Aab, i∆xab

i ), and

M (m)ab
µν =

1

2

(

D(m)ab
µ D(m)ab

ν − δµν

(

D(m)ab
ρ

)2
)

. (B.9)

For a given mode m, and colour indices ab, the eigenvalues of the 3 × 3 matrix M
(m)ab
ij

are −(D
(m)ab
τ )2 once, and −∑

α(D
(m)ab
α )2 repeated twice. Now our quadratic action is

positive after our gauge fixing, we may integrate out the fluctuations yielding, up to terms

independent of the moduli,

S1−loop = 2
∑

a<b

∞
∑

m=−∞

ln |D(m)ab
α |2

= 2
∑

a<b

∞
∑

m=−∞

ln

(

(

2πm + ∆Aab
)2

+ |∆xab|2
)2

(B.10)

where |∆xab|2 =
∑

i(∆xab
i )2. We note that the constant m = 0 modes have an enhanced

SO(4) target spacetime global symmetry. This is explicitly broken by our gauge choice,

but the result should have this full invariance, and we indeed see that this is the case. We

also note that the effective action takes the form of a pair-wise interaction between the

moduli with colour labels a and b.
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The infinite sum over Fourier modes must be regulated in the quenched case. A Pauli-

Villars regulator can be utilized, giving a regularized 1-loop action,

Sreg = 2 lim
Ω→∞

∑

a<b

∞
∑

m=−∞

ln

(

(2πm + ∆Aab)2 + |∆xab|2
(2πm)2 + Ω2

)2

= 2
∑

a<b

ln
(

cosh |∆xab| − cos ∆Aab
)

(B.11)

where in the second line we have suppressed the trivial divergence going as RΩ.

When was this 1-loop integration valid? As with any dimensional reduction on a

circle, the strongest coupled modes are the ones that are constant on the circle. We should

compare our quadratic action (B.8) for these constant modes with the interaction terms,

S int = −1

2

N

λ
R Tr

(

δΦ⋆(0)
µ δΦ(0)

ν δΦ⋆(0)
µ δΦ(0)

ν − δΦ⋆(0)
µ δΦ(0)

ν δΦ⋆(0)
ν δΦ(0)

µ

)

(B.12)

In order to obtain a canonical kinetic term in (B.8) we should rescale the constant fluctu-

ation fields,

δΦ̃
(0)
µ,ab =

√

N |D(0)ab
α |2

Rλ
δΦ

(0)
µ,ab (B.13)

Our interaction term now takes the schematic form,

S int ∼ λR3

|D(0)ab
α |4

1

N3

(

δΦ̃(0)
)4

(B.14)

where we have suppressed the obvious index and matrix structure. The factors of N are

associated with the ’t Hooft limit. We therefore obtain effective couplings gab
eff for a 6= b,

for the constant modes coming from interaction terms,

gab
eff ∼ β3

((∆Aab)2 + |∆xab|2)2
. (B.15)

Since RAa should be thought of as an angular variable the effective coupling is really

characterized by just the non-compact bosonic moduli,

gab
eff ∼ β3

|∆xab|4 (B.16)

and hence we expect the 1-loop approximation is good provided,

|∆xab| ≫ β3/4 for all a 6= b. (B.17)

B.2 Thermal case

Again this case is straightforward, and closely follows the quenched calculation above. The

results in this section are a special case studied in Aharony et al [36]. We expand our fields
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as before, now including the fermions with the appropriate boundary conditions, so,

Aab(τ) = Aaδab +
1√
2π

∞
∑

m=−∞

δA
(m)
ab e

2π
R

imτ

Xi,ab(τ) = xa
i δab +

1√
2π

∞
∑

m=−∞

δX
(m)
i,ab e

2π
R

imτ

Ψα,ab(τ) =
1√
2π

∞
∑

m=−∞

δΨ
(m)
α,abe

2π
R

i(m+ 1

2
)τ (B.18)

We see that due to the antiperiodicity the fermions can have no constant mode on the

circle. As before we take δA
(0)
ab , δX

(0)
i,ab and now also δΨ

(0)
α,ab to vanish when a = b. We gauge

fix the action in the same manner, and now arrive at a similar action to the quenched one

above in equation (B.8), but with a fermionic piece too,

S1−loop =
N

λR

∞
∑

m=−∞

[

∑

a<b

(

δX
⋆(m)
i,ab M

(m)ab
ij δX

(m)
j,ab

)

+
∑

a,b

(

δΨ̄
(m)
ab iσ̄ρD

(m+ 1

2
)ab

ρ δΨ
(m)
ab

)

−
∑

a<b

ln |D(m)ab
τ |2



 (B.19)

Now performing the fermionic integral yields a determinant equal to
∏∞

m=−∞

∏

a,b(D
(m+ 1

2
)ab

α )2. The bosonic fluctuation integral yields the same result

as for the quenched theory. Putting this together we obtain the effective action for the

bosonic zero modes,

S1−loop = 2
∑

a<b

∞
∑

m=−∞

ln |D(m)ab
α |2 −

∑

a,b

∞
∑

m=−∞

ln |D(m+ 1

2
)ab

α |2

= 2
∑

a<b

∞
∑

m=−∞

ln

(

(2πm + ∆Aab)2 + |∆xab|2
(2πm + π + ∆Aab)2 + |∆xab|2

)2

= 2
∑

a<b

ln

(

cosh |∆xab| − cos ∆Aab

cosh |∆xab| + cos ∆Aab

)

(B.20)

where no regulator is required to evaluate the infinite sum in the last line.

B.3 Periodic case

The results in this section are new, but follow straightforwardly from previous work in

Aoki et al and Aharony et al [42, 36]. Again we expand our fields,

Aab(τ) = Aaδab +
1√
2π

∞
∑

m=−∞

δA
(m)
ab e

2π
R

imτ

Xi,ab(τ) = xa
i δab +

1√
2π

∞
∑

m=−∞

δX
(m)
i,ab e

2π
R

imτ

Ψα,ab(τ) = ξa
αδab +

1√
2π

∞
∑

m=−∞

δΨ
(m)
α,abe

2π
R

imτ (B.21)
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but note that now with periodic boundary conditions we must include fermion zero modes

ξa
α. As before we take δA

(0)
ab , δX

(0)
i,ab, δΨ

(0)
α,ab to vanish when a = b, and the SU(N) colour

symmetry implies that the sums
∑

a Aa,
∑

a xa
i and also

∑

a ξa
α vanish. Using the notation

∆ξab = ξa − ξb for the fermion zero modes we may now write the action to quadratic order

in the perturbations, obtaining,

S1−loop =
N

λR

∑

a<b

∞
∑

m=−∞

(

δΦ
⋆(m)
µ,ab δΨ̄

(m)
α̇,ab

)

(

M
(m)ab
µν ∆ξ̄ab

α̇ σ̄µ,α̇α

σ̄ν,α̇α∆ξab
α iσ̄ρ,α̇αD

(m)ab
ρ

)(

δΦ
(m)
ν,ab

δΨ
(m)
α,ab

)

(B.22)

We see now that there are off-diagonal terms that mix the fermion and boson fluctuations,

which are coupled together by the presence of the fermion zero modes. These can be

removed by the following transformation,

δΨ
(m)
ab = δΛ

(m)
ab − i

1

(D
(m)ab
ρ )2

(

σαD(m)ab
α

)(

σ̄β∆ξab
)

δΦ
(m)
β,ab (B.23)

which we note is a simple shift in the fermion fluctuation, and hence does not alter the

path integral measure. Now we find the quadratic fluctuation action is diagonal,

S1−loop =
N

λR

∑

a<b

∞
∑

m=−∞

(

δΦ
⋆(m)
µ,ab δΛ̄

(m)
ab

)

(

M
(m)ab
µν + S

(m)ab
µν 0

0 iσ̄ρD
(m)ab
ρ

)(

δΦ
(m)
ν,ab

δΛ
(m)
ab

)

(B.24)

where,

S(m)ab
µν = −i

1

(D
(m)ab
ρ )2

(∆ξ̄abσ̄µ)(σαD(m)ab
α )(σ̄ν∆ξab). (B.25)

It follows from δΦ
(m)
µ,ab = δΦ

(−m)⋆
µ,ba , and D

(m)ab
α = −D

(−m)ba
α that the action actually projects

only onto the antisymmetric component S
(m)ab
[µν] = 1

2

(

S
(m)ab
µν − S

(m)ab
νµ

)

. This antisymmetric

part can be written as,

S
(m)ab
[µν] = −iǫµναβ D

(m)ab
α

(D
(m)ab
ρ )2

(∆ξ̄abσ̄β∆ξab), (B.26)

We may now write the quadratic action as,

S1−loop =
N

λR

∞
∑

m=−∞





∑

a<b

P +
∑

a,b

iδΛ̄σ̄ρDρδΛ





P = δΦ⋆
µ

(

DµDν − δµνD2
α + ǫµναβDαJβ

)

δΦν (B.27)

where,

Jα = −2i
1

(Dρ)2
(∆ξ̄σ̄α∆ξ) (B.28)

and in these last two equations we have suppressed the Fourier index m, and colour indices

a, b for clarity. Again the bosonic operator in this action has a zero eigenvalue corresponding

to the gauge freedom. Correspondingly we see,

(M (m)ab
µν + S

(m)ab
[µν] )D(m)ab

ν = 0. (B.29)
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Performing the same gauge fixing as before we have,

S1−loop =
N

λR

∞
∑

m=−∞





∑

a<b

P g.f. +
∑

a,b

iδΛ̄σ̄ρDρδΛ



 −
∑

a<b

ln |detDτ |2

P g.f. = δΦ⋆
i

(

DiDj − δijD
2
α + ǫijαβDαJβ

)

δΦj (B.30)

and now integrating over the bosons yields the determinant of the 3×3 matrix in ij above,

giving the elegant result

S1−loop =
∞
∑

m=−∞

∑

a<b

ln
(

(D2
µ)2 + (D2

µ)(J2
ν ) − (DµJµ)2

)

+
N

λR

∞
∑

m=−∞

∑

a,b

iδΛ̄σ̄ρDρδΛ (B.31)

where we again see that the SO(4) spacetime symmetry for the m = 0 constant modes

is restored after the gauge fixing had broken it. Performing the fermion integration then

yields the 1-loop action,

S1−loop =

∞
∑

m=−∞

∑

a<b

ln

(

1 +
1

(D2
µ)2

(

(D2
µ)(J2

ν ) − (DµJµ)2
)

)

(B.32)

and we immediately see that if it where not for the fermion zero modes contributing to the

presence of Jµ, the action would vanish. Hence there has been almost total cancellation

between the boson and fermion determinants. Now since Jµ ∼ ∆ξ̄σ̄µ∆ξ and each spinor

ξα has only 2 components, the action can contain at most quadratic terms in Jµ. Hence

we may expand the logarithm above to give,

S1−loop = +
∞
∑

m=−∞

∑

a<b

4
(

(D
(m)ab
ρ )2

)4

(

D(m)ab
α D

(m)ab
β

−(D(m)ab
µ )2δαβ

)

(∆ξ̄abσ̄α∆ξab)(∆ξ̄abσ̄β∆ξab)

= −
∞
∑

m=−∞

∑

a<b

24
(

(D
(m)ab
ρ )2

)3 (∆ξ̄ab
1 ∆ξ̄ab

2 ∆ξab
1 ∆ξab

2 ) (B.33)

where we have written the expression out fully. The partition function is then given by the

functional integral over the bosonic and fermionic zero modes of this action,

Z ≃
∫

dAdXidξdξ̄e−S1−loop

=

∫

dAdXidξdξ̄
∞
∏

m=−∞

∏

a<b






1 +

24
(

(D
(m)ab
ρ )2

)3 (∆ξ̄ab
1 ∆ξ̄ab

2 ∆ξab
1 ∆ξab

2 )







=

∫

dAdXidξdξ̄
∏

a<b






1 +

∞
∑

m=−∞

24
(

(D
(m)ab
ρ )2

)3 (∆ξ̄ab
1 ∆ξ̄ab

2 ∆ξab
1 ∆ξab

2 )






(B.34)
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where we will not keep track of the overall normalization of Z. It is implicit in the measure

that the gauge group is SU(N) and hence there is the constraint
∑

a ξa
α,

∑

a ξ̄α̇a = 0, and

this is important in giving the form of the expression below. For example, if we had instead

taken the gauge group U(N), the partition function would vanish as the trace of the adjoint

fermion matrices that are constant on the circle decouple and since give fermion zero modes

at 1-loop. After integrating these, the partition function will vanish.

Following Aoki et al [42], we may perform the integral over the fermionic zero modes

to give an effective 1-loop action for the bosonic moduli. In their analysis they express

the answer in terms of sums over maximal trees with various valences as they consider 4,8

and 16 supercharge matrix models. However as they note, the case of 4 supercharges is

somewhat simpler than the others, and the ‘tree’ machinery is somewhat redundant. The

answer can in fact simply be written as,

Z =

∫

dAdXi

∑

(a1,a2,...,aN )∈P

Ma1a2Ma2a3 . . . MaN−2aN−1MaN−1aN (B.35)

where P is the set of permutations of (1, 2, . . . , N) and,

Mab =
∞
∑

m=−∞

1
(

(m + ∆Aab)2 + (∆xab
i )2

)3 . (B.36)

This gives rise to the effective action given in the main text. We note that the infinite sum

over Fourier modes is finite, and can simply be evaluated explicitly, although the expression

obtained is unilluminating.

C. Simulation details

Both naive and supersymmetric lattice actions take the form

S = κ
(

SB(X) + SF (ψ,ψ,X)
)

(C.1)

where

SB =
M
∑

x=0

−1

2

3
∑

i

(D+Xi(x))2 − 1

2

3
∑

i>j

[Xi(x),Xj(x)]2 (C.2)

has the same form in both cases except for a different definition of the covariant derivative.

Notice that the scalar fields in the above action are expanded on the traceless antihermitian

matrix basis of SU(N). The lattice coordinates x are equally distributed with spacing a

on a circle of length R = Ma and R can be identified with 1
T in the case of non-zero

temperature. The fermion action takes the generic form

SF =
∑

x,y

ψ(x)M(X)x,yψ(y) (C.3)

where the fermion operator M(X) depends on the discretization. An immediate question

arises as to how to scale κ as the lattice spacing is reduced and the continuum limit
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approached. Clearly the relevant dimensionless parameter in the continuum is λR3 where

the ’t Hooft coupling λ = g2
physN is used to access the large N limit. Equating the inverse

of this parameter to the corresponding lattice quantity κ
M3 yields the needed scaling of κ

κ =
NM3

λR3
=

NM3

β3
(C.4)

To simulate this system we must first integrate out the Grassmann fields yielding either

det(M) or det
1

2 (M) for naive or supersymmetric actions. In practice this is accomplished by

introducing complex commuting pseudofermion fields F with the same quantum numbers

as the fermions ψ and modifying the action as

S = κ
(

SB + F †(M†M)−pF
)

(C.5)

where p = 1
2 or p = 1

4 in the two cases. Notice that this requires the determinants be real

and positive definite.

Thus we now require an algorithm which can efficiently handle fields coupled through a

fractional inverse power of the fermion operator – realized as a P×P matrix with dimension

P = 2(N2 − 1)M in the naive discretization (and twice this in the supersymmetric case).

To proceed further requires that we use an approximation for the fractional power. Most ef-

fective is a partial fraction realization of a rational function approximation in some interval

xp ∼ a0 +

Q
∑

i=1

ai

x + bi
ǫ < x < 1 (C.6)

The optimal coefficients {ai, ba} can be determined offline using the remez algorithm

which seeks to minimise the absolute value of the relative error for fixed (Q, ǫ). In practice

we have used approximations with Q = 10 − 15 and intervals ranging from ǫ = 10−12 − 10

which conservatively covers the range needed and yields relative errors O(10−4 − 10−8).

The latter systematic error is far below the statistical errors of the Monte Carlo calculation

and can thus be ignored. The action we have simulated thus takes the form

S = κ

(

SB(φ) + a0F
†F +

Q
∑

i=1

aiF
† 1

M†M + bi
F

)

(C.7)

which resembles the contribution of a number of doublets of degenerate fermions each

with different mass parameters.

This is still a non-local action and to simulate it efficiently requires the use of an

auxiliary classical dynamics. To be precise one replaces the original partition function

Z =
∫

Dqe−S(q) depending on a generic set of fields denoted by {q} by another comprising

{q, p} with partition function Z ′ =
∫

DqDpe−H where

H = S +
∑ 1

2
p2 (C.8)

Clearly expectation values derived from Z ′ and Z are identical. Furthermore (approximate)

Hamiltonian evolution in this phase space can be used to generate a series of global moves
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on {q, p} which, when subjected to the usual metropolis test, will generate the canonical en-

semble needed to simulate Z ′.5 The resulting algorithm is termed Hybrid Monte Carlo [51].

In detail one starts from some initial set of coordinates q, draws new momenta p from

a gaussian distribution and then evolves the fields {p, q} according to Hamilton’s equations

∂q

∂t
= p (C.9)

∂p

∂t
= −∂S

∂q
= f

In practice a leapfrog integration with finite timestep dt is used to advance the fields along

a classical trajectory of length τ

pn+1/2 = pn +
∆t

2
fn (C.10)

qn+1 = qn + ∆tpn+1/2

pn+1 = pn+1/2 +
∆t

2
fn+1

In practice we have used this update nT times corresponding to trajectory lengths τ =

nT ∆t = 0.05− 1. After this we expect the lattice Hamiltonian to be conserved to O(∆t2).

We can then remove this ∆t dependence by treating the final configuration as a potential

global update in a metropolis simulation and accept the new configuration with probability

e−∆H . Subsequently the momenta are refreshed and a new trajectory commenced.

In our case q = {X,U1, F} and the major inputs to this algorithm are the forces ∂S
∂φ ,

∂S
∂U1

and ∂S
∂F . Of these the most computationally expensive are the pseudofermion terms.

For example the force term ∂SPF

∂X is given by

∂SPF

∂X
= −

Q
∑

i=1

aiχ
i† ∂(M†M)

∂X
χi (C.11)

where χi is the solution of the auxiliary problem

(M†M + bi)χ
i = F (C.12)

The final trick required to render this approach computationally feasible is to utilize a

multi-mass solver to solve this set of Q equations iteratively and with a computational

cost similar to the case when Q = 1. We have implemented a multimass CG-solver for our

work [52]. Implementing the rational approximation for the fractional fermion operator in

conjunction with the multimass solver in the way described is termed the Rational Hybrid

Monte Carlo algorithm [53].

D. Continuum limits

In this section we show the bosonic action observable SB and the Polyakov loop observable

P for increasing lattice sizes using the naive implementation for the quenched (figure 10),

5This requires that the finite time step classical evolution be reversible and area preserving which is true

for the leapfrog integrator used here
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0 0.5 1 1.5 2 2.5 3βº1.4º1.2º1º0.8º0.6º0.4º0.20<S > 5 lattice points8 lattice points12 lattice points
Quenched SU(5)

B
0 0.5 1 1.5 2 2.5 3β00.20.40.60.81P M=5M=8M=12

Quenched SU(5)

0 0.5 1 1.5 2 2.5β0.40.50.60.70.8
W 5 lattice points8 lattice points12 lattice points

Quenched SU(5)

Figure 10: Plots of quenched theory action SB, Polyakov loop P and scalar width W for N = 5

with varying lattice points M = 5, 8, 12.

0 0.5 1 1.5 2β00.20.40.60.81P M=5M=8M=12
Periodic SU(3)

0 0.5 1 1.5 2β0.50.70.9
W M=5M=8M=12

Periodic SU(3)

Figure 11: Plots of periodic theory Polyakov loop P and scalar width W for N = 3 with varying

lattice points M = 5, 8, 12.

periodic (figure 11) and thermal theories (figure 12). We see that in all cases, over the

range of β of interest, 5 lattice points already appears to give results that are close to the

continuum limit. Note that for the periodic theory, the continuum limit of the bosonic

action is discussed in the main text in the results section.

We have observed that the thermal theory exhibits large lattice artifacts for small

values of N and the number of lattice points M . This is true both for the naive and
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0 0.5 1 1.5 2βH1H0.8H0.6H0.4H0.20<S > M = 5M = 8M = 12
Thermal SU(5)B

0 0.5 1 1.5 2β00.20.40.60.81P M=5M=8M=12
Thermal SU(5)

0 0.5 1 1.5 2β0.40.50.60.70.80.91W M = 5M = 8M = 12
Thermal SU(5)

Figure 12: Plots of thermal theory action SB, Polyakov loop P and scalar width W for N = 5

with varying lattice points M = 5, 8, 12.

supersymmetric actions. To illustrate this figure 13 shows a plot of the Monte Carlo history

of the maximal fermion eigenvalue λmax for the SU(2) theory at β3 = 10.0 obtained using

the supersymmetric implementation. The plot includes data for lattice sizes M = 5, 10, 20.

The data is shown as a function of physical time measured in units of τ = 1 RHMC

trajectories. Data is plotted every 100 units of time with short time fluctuations being

removed by plotting a running average obtained using a temporal window of 10 units

of time. This fermion eigenvalue is strongly correlated with the rms value of the scalar

eigenvalues. Very large fluctuations are seen with extremely large autocorrelation times

for M = 5 lattice points. These fluctuations are not manifest in the bosonic action SB

and appear to derive from large fluctuations of the scalars in the classical moduli space.

These motions are strongly suppressed in the periodic theory on account of the presence of

superpartner fermion zero modes. Of course as the number of lattice sites is increased the

masses of these would be zero modes are lowered and once again they act so as to inhibit

fluctuations of the scalars in the zero mode directions. We see this in the data which shows

a marked reduction in the amplitudes of these fluctuations as the number of lattice points

M increases. Of course the dimension of the moduli space varies like N and so we would

also expect these effects to be suppressed at large N which is also observed.

The problems seem most acute with the supersymmetric action and so for data pre-

sented in the main text we have concentrated on using the naive implementation for the
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Figure 13: Monte Carlo history of maximal fermion eigenvalue for SU(2) and supersymmetric

action

0 0.5 1 1.5 2 2.5β0.990.9951
1.0051.01

<S >
Periodic SU(3) with 5 lattice pointsF

0 0.5 1 1.5 2β0.990.9951
1.0051.01

<S > PeriodicThermal
SU(5) with 5 lattice pointsF

Figure 14: Plots of the fermion action SF for periodic theory with N = 3 (left) and periodic and

thermal with N = 5 (right), both for 5 lattice points.

bulk of our thermal runs. In this case to avoid these strong artifacts we require N ≥ 5,

M ≥ 5 for the range of β we are studying, β3 ≤ 10.0, and as we see in the figure 12 we

obtain a good continuum limit.

We conclude with figure 14 which shows data from the naive implementation of the

fermion action SF for the naive theory for representative values of N and 5 lattice points.

Scaling arguments imply this quantity should equal unity and we see the data confirms this

to within statistical errors, providing a non-trivial check of the RHMC routines. A similar

check was performed on the supersymmetric implementation.
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